
About Qt

Qt is a framework to develop cross-platform applications. Currently, the supported

platforms are Windows, Linux, macOS, Android, iOS, Embedded Linux and some others.

Genarally, it means that the programmer may develop the code on one platform but compile,

link and run it on another platform. But it also means that Qt needs help: to develop

software it must cooperate with development tools on specific platforms, for example in

case of Windows with Visual Studio.

Qt is well-known for its tools for developing graphical user interfaces (GUI) , but it also

provides powerful tools for threads, networking and communication (Bluetooth, serial port,

web), 3D graphics, multimedia, SQL databases, etc.

Qt has its own Integrated Development Environment (IDE): QtCreator.

History: 1991: version 1.0 as cross-platform GUI programming toolkit was developed and

implemented by TrollTech (Norway). 2005: version 4.0 was a big step ahead but the

compatibility with older versions was lost. 2008: TrollTech was sold to Nokia. 2012: Nokia

Qt division was sold to Digia (Finland). 2014: Digia transferred the Qt business to Qt

Company. The latest Long Term Support (LTS) version is 5.12.

Official website: https://www.qt.io/

https://www.qt.io/

Installation

The link is https://www.qt.io/download. Select the non-commercial and open source

version. It may be possible that you must register yourself creating a new passworded

account.

Select the latest stable release and

the C/C++ development system(s)

you are going to use.

Tip: the Qt installer proposes to

store the stuff in folder C:\Qt. To

avoid later complications, agree.

Tip: QtCreator.exe is in folder

C:\Qt\Tools\QtCreator\bin

https://www.qt.io/download

First steps with QtCreator (1)

Start QtCreator and select Tools → Options → Kits:

Here "kit" is the complete build configuration. The list shows which possible kits are

automatically detected. Yellow triangle means that something is missing.

First steps with QtCreator (2)

First steps with QtCreator (3)

QtCreator manual is on http://doc.qt.io/qtcreator/.

Each kit specifies the device, compiler, debugger and Qt version. To build an application,

we have to tell the wizard which kit(s) we want to use. In most cases QtCreator is able to

detect all the possible kits. But it does not mean that all the detected kits are useable –

some of them miss compiler or debugger or both of them. It is possible to build new kits

manually, add new compilers and debuggers, etc. In this course it is advisable to use kits

Desktop Qt 5.12.0 MSVC 2017 32 bit or 64 bit.

Some glossary:

UWP – Universal Windows Platform (for Windows 10 and Windows 10 Mobil)

ARM - a family of processors

Qbs – Qt tool to simplify the building of projects across multiple platforms

CMake – family of tools for building, testing and packaging software products.

http://doc.qt.io/qtcreator/

First steps with QtCreator (4)

To start a GUI project

select Projects → New →

Qt Widgets Application

and set the instructors for

wizard (which kit to use,

what is the name and

folder of project, etc.).

The wizard creates files

main.cpp,

mainwindow.cpp,

mainwindow.h,

mainwindow.ui and the

project file with extension

*.pro.

In Edit view QtCreator

shows the code. Double-

click on mainwindow.ui

to step into Design view.

First steps with QtCreator (5)

First steps with QtCreator (6)
Drag a push button from the Widgets palette (right) into the main window. In the Properties

table (left lower corner) specify the text on button (for example, Exit).

Right-click the button and from the pop-up menu select Go to slot.

Select clicked() and OK. QtCreator returns to the edit

view. You can see that the mainwindow.cpp has got a

new function on_pushButton_clicked:

This function is called when the user clicks on our

button.

First steps with QtCreator (7)

Write into the new function just one row of code:

QApplication::exit();

To test click the green arrow on the left toolbar.

Turn attention that we have got two new folders:

• Folder having the same name as the project contains the *.cpp, *.h, *.ui and *.pro

files.

• Folder which name starts with word build_ contains all the other stuff. Each kit we

have selected has its own build folder.

The executable from the build folder cannot run outside of the QtCreator environment.

About creation of stand-alone software product we'll discuss later.

Tips:

• To avoid later complications do not change names and other code created by wizard.

• Sometimes you may get strange and seemingly senseless error messages. If you are

sure that your code is correct, try to rebuild. If it does not help try command Run

qmake (Build menu). At last close QtCreator, delete the complete build folder and

restart QtCreator.

• Searching help from net turn attention about which version of Qt they are discussing.

Versions 4.x are completely out of date.

See the complete example from IAS0410 QtExamples.zip folder 1.

First steps with QtCreator (8)
In our second Qt GUI project (see IAS0410 QtExamples.zip folder 2) let us create the

following window:

We have now 4 widgets: 2 Push Buttons, 1 Line

Edit and l Label. In the Properties table for each

object let us set objectName, for example

m_exitButton, m_countButton, m_counterLineEdit,

m_counterLabel. For buttons set the reactions to

click. For Line Edit set text "0".

After each click on m_countButton the number

shown in m_counterLineEdit must be incremented.

void MainWindow::on_m_CountButton_clicked()

{

QString currentText = ui->m_counterLineEdit->text();

// class QString http://doc.qt.io/qt-5/qstring.html

// class QLineEdit http://doc.qt.io/qt-5/qlineedit.html

int currentCounter = currentText.toInt();

currentCounter++;

ui->m_counterLineEdit->setText(currentText.setNum(currentCounter));

}

http://doc.qt.io/qt-5/qstring.html
http://doc.qt.io/qt-5/qlineedit.html

First steps with QtCreator (9)

To get the pointer to a widget write: ui->widget_name.

Useful links:

http://doc.qt.io/qt-5/classes.html the full list of Qt standard classes

http://doc.qt.io/qt-5/qtwidgets-module.html the full list of Qt widget classes

Writing Qt software try to avoid to use C++ standard classes. Instead of them use the

corresponding Qt classes:

• QString (uses Unicode UTF-16)

• QByteArray

• QFile

• QThread

• Qt containers like QVector, QList, QMap, QSet, etc.

The C++ classes and Qt classes are very similar but some differences do exist.

For simple debugging use class QDebug (see http://doc.qt.io/qt-5/qdebug.html), for

example:

#include <QDebug>

qDebug() << "x = " << x; // like in cout

Method qDebug() returns the qDebug object.

http://doc.qt.io/qt-5/classes.html
http://doc.qt.io/qt-5/qtwidgets-module.html
http://doc.qt.io/qt-5/qdebug.html

Signals and slots (1)
It is clear that a GUI must run in its own thread(s). When the user clicks a widget, types a

word or just presses a key, an event has occurred. The GUI must have a listener that

catches the events. An event may be ignored, but it is also possible that the event

triggeres some action. This is the event-driven programming – the base of Windows and

the other systems with graphical user interface.

In Qt this mechanism is implemented by signals and slots. The Qt standard classes have a

common base class: QObject. The widgets have common base class QWidget inherited

from QObject. QObjects are able to emit signals (i.e. send notifications informing that an

event has occurred, a state parameter has changed, etc.). This signal must be processed

and if necessary, some action performed. Consequently, we need a specific function

called when the specific signal is emited. This function is called as slot.

In the first example, when the user clicks the button, signal clicked() is emitted (see slaid

First steps with QtCreator (6)). The wizard creates for us the corresponding slot: method

MainWindow::on_pushButton_clicked(). In mainwindow.h you may see:

private slots:

void on_pushButton_clicked();

Signals can have arguments. In that case the connected to it slot must be a method with

input parameters. Slots may be functions or functors.

A slot may have several signals and a signal may have several slots. Read more from

https://doc.qt.io/qt-5/signalsandslots.html.

https://doc.qt.io/qt-5/signalsandslots.html

Signals and slots (2)

In the previous two examples the signals from widgets were connected to slots by wizard. It

is also possible and rather often necessary to do it manually.

In our third example (see IAS0410 QtExamples.zip folder 3) we create our two slots

ourselves:

private slots: // in mainwindow.h add two slot methods (not simple methods)

void exit();

void incrementCounter();

void MainWindow::exit() // definition in mainwindow.cpp

{

QApplication::exit();

}

void MainWindow::incrementCounter() // definition in mainwindow.cpp

{

QString currentText = ui->m_counterLineEdit->text();

int currentCounter = currentText.toInt();

currentCounter++;

ui->m_counterLineEdit->setText(currentText.setNum(currentCounter));

}

Signals and slots (3)

To connect a signal and slot use method connect from class QObject:

connect(pointer_to_object_emitting_signal,

&emitter_class_name::signal_name,

pointer_to_object_receiving_signal,

&slot_class_name::slot_name);

Thus, in the third example we have to insert into MainWindows constructor:

connect(ui->m_exitButton, &QPushButton::clicked, this, &MainWindow::exit);

connect(ui->m_counterButton, &QPushButton::clicked,

this, &MainWindow::incrementCounter);

Classes created by us may also emit and receive signals. But in that case:

• They must be derived from class QObject

• Their declaration must start with macro Q_OBJECT .

Signals are declared in class declaration as ordinary methods but in their own section:

signals:

void signal_name_1(signal_parameter_list);

void signal_name_2(signal_parameter_list);

………………………………………..

To emit a signal write:

emit signal_name(actual_parameters_list);

Signals and slots (4)

In the following example (see IAS0410 QtExamples.zip folder 4) clicking on the

m_counterButton we send signal clicked() to an object of class Counter. The counter, in turn,

sends signal valueChanged to the MainWindow which changes the value in m_counterLineEdit:

#include <QObject>

class Counter : public QObject

{

Q_OBJECT

private:

int m_Value = 0;

public:

Counter() { }

signals:

valueChanged(int);

public slots:

void Increment() { m_Value++; emit valueChanged(m_value); }

};

Signals and slots (5)

In the main window:

MainWindow::MainWindow(QWidget *parent) :

QMainWindow(parent),

ui(new Ui::MainWindow)

{

m_pCounter = new Counter();

ui->setupUi(this);

connect(ui->m_exitButton, &QPushButton::clicked, this, &MainWindow::exit);

connect(ui->m_counterButton, &QPushButton::clicked, m_pCounter, &Counter::Increment);

connect(m_pCounter, &Counter::valueChanged, this, &MainWindow::showValue);

}

void MainWindow::exit()

{

QApplication::exit();

}

void MainWindow::showValue(int value)

{

ui->m_counterLineEdit->setText(QString::number(value));

}

Parents and children

Objects from classes derived from QObject may or may not have parent object, for example the

wizard-created main window has constructor:

explicit MainWindow(QWidget *parent = nullptr);

(see slide Conversion constructors (2) from chapter Advanced C++).

If an object has its parent object:

• If the parent is destroyed, this object as child will be also automatically destroyed.

• If the parent widget (for example a frame window) appears on the screen, all its children

widgets (for example a set of buttons) will automatically appear inside it.

To find a specific child, the parent object must call method findChild(). To get the list of a group

of children or the list of all children use method findChildren(). They both belong to base class

QObject: https://doc.qt.io/qt-5/qobject.html

https://doc.qt.io/qt-5/qobject.html

Qt events (1)
Slots are ordinary class functions but must be declared in their own section private slots or

public slots. In *.cpp files they are defined as ordinary class functions. Signals are declared as

ordinary class functions but in their own section signals. As signals are notifications, they are

not defined. An object may emit signal, i.e. send the signal to the connected to it slot and thus

force the slot function to start running.

In addition to signals and slots Qt has a parallel mechanism: the events. An event is an object

derived from abstract class QEvent. The events are distinguished by their types: for example

QEvent::KeyPress, QEvent::KeyRelease, QEvent::MouseButtonDblClick, QEvent::Wheel, etc.

(see https://doc.qt.io/qt-5/qevent.html). Mostly, an event is the result of an activity outside the

application (for example, a mouse click) but there may be also events that happen inside the

application (for example, QEvent::Timer).

When an event is detected (mostly by Windows or another operating system), it is inserted into

the event queue. The queue is handled by Qt event dispatcher that loops through the queue. The

main event loop is started by method exec() from class QApplication (see the wizard-created

main.cpp):

QApplication a(argc, argv);

…………………………….

return a.exec(); // also blocks the main() until the end of application

When a Qt application is running, the control flow is either in the event loop or in the code

implemented by us.

https://doc.qt.io/qt-5/qevent.html

Qt events (2)

The dispatcher pops the event from queue and creates the corresponding event object. Each

event has a receiver. For example, if we insert into our GUI a button, we also create an object of

class QPushButton. Parameter objectName in the Qt designer properties window (for example

m_exitButton) is actually the pointer to this object. If our application is running and the user

clicks the Exit button, the receiver is the object with pointer m_exitButton. The dispatcher

creates a QEvent object of type QEvent::MouseButtonPress and calls function QPushButton::

event() with the event object as the actual parameter.

The event handling functions are virtual. Therefore the programmers may override them and

thus change the standard features of widgets or even add some new ones. For typical operations

the signals / slots mechanism is good enough and we may forget the events. But if we, for

example, want that when the mouse is moving over the button then the button turns to red, we

need to override event handling functions. More exactly, we have to create our own class

derived from QPushButton.

When the user clicks icon X on the main window right upper corner, a QCloseEvent targeted to

MainWindow is generated. If our application must before closure perform some operations (for

example, close connections or store settings), we have to impelement the QCloseEvent handling

method.

Qt events (3)

Example:

void MainWindow::closeEvent(QCloseEvent *event)

{

QMessageBox question(QMessageBox::Question, "SineGenerator", "Are you sure?\n",

QMessageBox::Cancel | QMessageBox::No | QMessageBox::Yes);

if (question.exec() != QMessageBox::Yes)

{

event->ignore(); // reject, closing cancelled

}

else

{

event->accept(); // accept, go on with standard cancel procedures

}

}

The example demonstrates also how to use a simple message box. Read more from

https://doc.qt.io/qt-5/qmessagebox.html.

For better understanding the difference between signals / slots mechanism and events

mechanism study https://stackoverflow.com/questions/3794649/qt-events-and-signal-slots.

https://doc.qt.io/qt-5/qmessagebox.html
https://stackoverflow.com/questions/3794649/qt-events-and-signal-slots

Qt threads (1)

Each Qt application has its main thread or the GUI thread. The other threads launched in a Qt

application are often referred as worker threads.

All the widgets are handled only in the GUI thread and cannot be directly accessed from the

other threads.

The Qt thread has its own stack of local variables. It may also have its own event queue for

events that do not belong to GUI event queue.

The communication between threads is organized by signals / slots and events.

The simplest way to create and execute a Qt thread is as follows:

1. Create a class derived from QThread.

2. In this class implement the thread entry point function:

protected: void run() override { …… }

3. Define an object of this class.

4. Call method start() associated with this new object. It calls the run() and emits the started

signal.

5. When run() exits, thread emits the finished signal.

Qt threads (2)
Example (see also see IAS0410 QtExamples.zip folder 7):

Create a simple worker thread without event loop:

class WorkerThread : public QThread

{ // Do not forget to include QObject and QThread

Q_OBJECT

public:

WorkerThread();

protected:

void run() override { …………… } // do something

};

Let our main window contain button m_runButton. Click on it forces the worker thread to start

executing:

MainWindow::MainWindow(QWidget *parent) : QMainWindow(parent),

ui(new Ui::MainWindow)

{

ui->setupUi(this);

connect(ui->m_runButton, &QPushButton::clicked, this, &MainWindow::execute);

}

In mainwindow.h declare also:

WorkerThread *m_pWorkerThread = nullptr;

Qt threads (3)

void MainWindow::execute()

{ // slot for click from m_runButton

WorkerThread *m_pWorkerThread = new WorkerThread;

connect(m_pWorkerThread, &WorkerThread::finished, this, &MainWindow::showMessage);

connect(m_pWorkerThread, &WorkerThread::finished,

m_pWorkerThread, &QObject::deleteLater);

pWorkerThread->start();

}

Never destroy a thread object yourself. Instead of that send signal finished to QObject slot

deleteLater. It schedules the safe deletion in right time.

void MainWindow::showMessage()

{ // slot for signal "finished" from the worker thread

m_pWorkerThread->wait(); // wait until the end of thread (similar to C++ join)

QMessageBox msgBox;

msgBox.setText("Thread finished");

msgBox.exec();

}

Qt threads (4)

If the slot call is not made over thread boundaries, the slot function is called directly and

generally without delay.

However, it may happen that a signal is emitted from one thread and received by another

thread. In that case:

• The slot call arguments are packed up in a data structure and sent as an event to the receiving

thread's event queue.

• In the receiving thread, the QObject::event method unpacks the arguments and calls the slot

method.

In those cases the thread in which the receiving object lives must have its own event loop. To

start it, the overridden run() entry point function must call method exec() (see slide Qt events

(1)). To stop the event looping call QThread function quit(). Remember that exec() blocks the

thread and therefore must be called on the last row of run().

It is important to ascertain beforehand does our worker thread needs the event loop or not. First

of all we need to understand on which threads the objects specified as actual parameters in calls

to connect method are living or in other words: what is their thread affinity.

All the objects derived from QObject (i.e. possible to emit signals and process them in slots)

live on the thread in which they were created. Consequently, if we write in MainWindow:

WorkerThread *m_pWorkerThread = new WorkerThread;

then object with pointer pWorkerThread lives on the GUI thread. Even more, all its attributes

derived from QObject and created by WorkerThread constructor are also living on GUI thread.

Qt threads (5)
Example showing how to know where the objects are living:

class WorkerThread : public QThread

{

Q_OBJECT

public:

WorkerThread();

private:

QObject obj1, *pObj2; // defined in WorkerThread, but will live in GUI thread

……………….

};

WorkerThread::WorkerThread()

{ // prints ID of GUI thread

qDebug() << "Constructor runs in thread: " << QThread::currentThreadId();

pObj2 = new QObject;

qDebug() << "obj1 is in thread: " << obj1.thread()->currentThreadId();

qDebug() << "obj2 thread: " << pObj2->thread()->currentThreadId();

}

void WorkerThread::run()

{ // prints ID of worker thread

qDebug() << "run() runs in thread: " << QThread::currentThreadId();

………………………………………………………

}

Qt threads (6)
To avoid misunderstoodings, do not forget that:

• Object of class derived from QThread (for example m_pWorkerThread) is just a worker

thread object and not the thread itself. The thread is a sequence of machine instructions.

• When the run() method has started, the worker thread is running. Objects created in run() or

in methods called by run() are living on the worker thread.

• The constructor of worker thread object is called in GUI thread. Consequently the thread

object itself and all its attributes are living on the GUI thread.

• Methods defined in worker thread class may run as a part of worker thread (sequence of

instructions) as well as a part of GUI thread.

There are several types of signal / slot connections:

1. In case of direct connection the signal is emitted from the same thread on which the

receiver object is living. The slot method is called directly.

2. In case of queued connection the signal is emitted from one thread but the receiver object is

living on another thread. An event is created and posted. The thread on which the receiver

object is living must have event loop.

3. In case of blocked queued connection the thread from which the signal is emitted blocks

until the slot method returns.

Method connect has an additional parameter with default value Qt::AutoConnection (select

between direct and queued connection automatically). The other values are

Qt::QueuedConnection, Qt::DirectConnection, Qt::BlockingQueuedConnection.

Qt threads (7)
class WorkerThread : public QThread {

Q_OBJECT // see QtExamples.zip folder 5

………………

signals:

void reportSignal(QString);

protected:

void run() {

……………..

emit reportSignal(results);

……………..

}

};

void MainWindow::startThread() { // slot for button Start

m_pWorkerThread = new WorkerThread;

connect(m_pWorkerThread, &WorkerThread::reportSignal,

this, &MainWindow::showResults, Qt::QueuedConnection);

// The signal is sent from the worker thread, the receiver object (i.e. the main window)

// lives on the GUI thread. The thread affinity of sender object is meaningless.

…………………….

m_pWorkerThread->start();

}

Qt threads (8)

class WorkerThread : public QThread {

Q_OBJECT

………………

slots:

void stop();

protected:

void run() {

………………………………

}

};

void MainWindow::stopThread() { // slot for button Stop

connect(this, &MainWindow::stopSignal, m_pWorkerThread, &WorkerThread::stop,

Qt::DirectConnection);

emit stopSignal();

// The signal is sent from the GUI thread, the receiver object (i.e. the worker thread object)

// lives also on the GUI thread.

}

Qt threads (9)
class WorkerThread : public QThread {

Q_OBJECT

………………

slots:

void doSomethingSlot();

signals:

void doSomethingSignal();

protected:

void run() {

connect(this, &WorkerThread::doSomethingSignal,

this, &WorkerThread::doSomethingSlot,

Qt::QueuedConnetion);

emit doSomethingSignal();

……………………………………….

}

};

The signal is sent from the worker thread, the receiver object (i.e. the worker thread object)

lives on the GUI thread. Although it seems that we are sending signals inside the worker thread,

it is not so. The unpleasant circumstance here extremely compounding the code design is that

we have to add call to exec() on the last row of run().

An alternative solution is on the next slide.

Qt threads (10)

1. Create a class derived from QObject. This class must contain your entry point function with

any name but declared as a public slot. For example:

class Worker : public Qbject {

Q_OBJECT

signals:

void finished(); // do not forget it

void reportSignal(QString);

public slots:

void entryPoint();

……………………..

};

2. Define an object of this class, for example:

Worker *m_pWorker = new Worker;

3. Define and object of class QThread, for example:

QThread *m_pWorkerThread = new QThread;

4. Move your worker object into thread, i.e. change the affinity or worker object from GUI

thread to worker thread:

m_pWorker->moveToThread(m_pWorkerThread);

5. Set connections (on the next slide).

6. Start the thread, it calls the default run() which in turn calls exec():

m_pWorkerThread->start();

Qt threads (11)

connect(m_pWorkerThread, QThread::started, m_pWorker, &Worker::entryPoint,

Qt::DirectConnection);

// started signal is emitted from the worker thread, the receiver (i.e. worker) is moved into

// the same thread

connect(m_pWorker, &Worker::reportSignal,

this, &MainWindow::showResults, Qt::QueuedConnection);

// the signal is sent from the worker thread, the receiver object (i.e. the main window)

// lives on the GUI thread.

connect(m_pWorkerThread, &QThread::finished,

m_pWorkerThread, &QObject::deleteLater);

connect(m_pWorker, &Worker::finished,

m_pWorker, &QObject::deleteLater);

See also IAS0410 QtExamples.zip folder 6.

Useful websites:

https://wiki.qt.io/QThreads_general_usage

https://wiki.qt.io/Threads_Events_QObjects

https://doc.qt.io/qt-5/qthread.html

https://conf.qtcon.org/system/attachments/104/original/multithreading-with-

qt.pdf%3F1473018682

https://wiki.qt.io/QThreads_general_usage
https://wiki.qt.io/Threads_Events_QObjects
https://doc.qt.io/qt-5/qthread.html
https://conf.qtcon.org/system/attachments/104/original/multithreading-with-qt.pdf%3F1473018682

Qt thread synchronization

QMutex and QMutexLocker are almost identical with C++ standard mutex and unique_lock.

See https://doc.qt.io/qt-5/qmutex.html and https://doc.qt.io/qt-5/qmutexlocker.html.

The Qt alternative to C++ conditional_variable is QWaitCondition (see https://doc.qt.io/qt-

5/qwaitcondition.html). The differences are minor.

It is possible to use C++ mutexes and other thread control classes in QThreads.

QSemaphore (not discussed in this course) is similar to semaphores implemented in Windows,

see https://doc.qt.io/qt-5/qsemaphore.html.

QReadWriteLock is similar to QMutex. Its strength is that it is able to distinguish between

reading and writing operations and thus allow multiple readers (but not writers) to access the

data simultaneously. QReadLocker and QWriteLocker are convenience classes that

automatically lock and unlock a QReadWriteLock. See https://doc.qt.io/qt-

5/qreadwritelock.html.

https://doc.qt.io/qt-5/qmutex.html
https://doc.qt.io/qt-5/qmutexlocker.html
https://doc.qt.io/qt-5/qwaitcondition.html
https://doc.qt.io/qt-5/qsemaphore.html
https://doc.qt.io/qt-5/qreadwritelock.html

Qt input / output

The base class for I/O is QIODevice. All the other I/O classes are derived from it.

There are two types of I/O devices:

1. Random access devices like hard disk file (QFile class) have current position: we may set it

(usually with method named as seek) to where we want and then directly read or write. We

may also request the number of bytes in data set (i.e. the size). Reading and writing is fast

and in most cases the multithreading is not needed. In extreme situations (for example,

there is no data to read) we are informed immediately.

2. Sequental devices like sockets handle streams of data. There is no way to rewind the

stream. The amount of data in stream is previously unknown. As the device is remote, the

reading an writing may take time and those operations cannot be in the GUI main thread. Qt

has standard classes for working with serial ports (QSerialPort), Bluetooth connection

(QBluetoothSocket and several associated classes, Windows support needs Qt 5.14), named

pipes (QLocalSocket) and TCP connection (QTcpSocket and several associated classes).

Qt file operations (1)

QFile constructor (see https://doc.qt.io/qt-5/qfile.html) creates a new object but does not create

the disk file itself. It just specifies the file name:

QFile file_ name(QString_specifying_the_filename);

To operate with file we have to open it. The simplest way for that is:

file_name.open(open_mode);

The open modes are QIODevice::ReadOnly, QIODevice::WriteOnly and

QIODevice::ReadWrite. If the file does not exist and the mode is not QIODevice::ReadOnly, it

will created. The fundamental mode may be combined using the bitwise or with flags

QIODevice::Append, QIODevice::Truncate, QIODevice::Text, QIODevice::Unbuffered.

In case of failure the open method returns false. You may use the errorString method from

QIODevice to get QString explaining the reason.

Example:

QFile file("Test.txt");

if (!file.open(QIODevice::ReadWrite | QIODevice::Text | QIODevice::Truncate))

{

qDebug() << file.errorString();

}

When you do not need the file any more, close it:

file_name.close();

https://doc.qt.io/qt-5/qfile.html

Qt file operations (2)
To select a file in GUI use the QFileDialog standard dialog box (see https://doc.qt.io/qt-

5/qfiledialog.html). The simplest way to get the name of an existing file is to write:

QString file_name = QFileDialog::getOpenFileName(this, window_title, default_folder, filter);

Similar function is QFileDialog::getSaveFilename (file may not exist). Example:

QString fileName = QFileDialog::getOpenFileName(this, "Coursework",

"c:\\TTU studies", "*.cpp, *.h");

if (!filename.isEmpty()) { // i.e. not cancelled

QFile file(fileName);

}

To aqcuire the current position in file use method pos():

qint64 current_pos = file_name.pos();

Here qint64 corresponds to long long int type in Visual Studio. To shift to new position use

method seek():

file_name.seek(new_position);

Here the new position means the number of bytes from the beginning (and not from the current

position) of file.

To get the file size use method size():

qint64 file_size = file_name.size();

Example:

qint64 file_size = file.size();

file.seek(file_size); // to the end of file

https://doc.qt.io/qt-5/qfiledialog.html

Qt file operations (3)

To write into file:

file_name.write(pointer_to_array, number_of_bytes_to_write);

or

file_name.write(QByteArray_to_write);

In both cases the function returns the number of bytes that was actually written. Return value -1

means that the writing failed.

Example:

QFile file("Test.bin");

file.open(QIODevice::ReadWrite | QIODevice::Truncate);

char arr[] = { 'a', 'b', 'c', 'd' };

file.write(arr, 4);

QByteArray qba("efgh");

file.write(qba);

Remark that in Qt string constants consist of one-byte characters. But in

QString qstr("efgh");

the characters are converted into two-byte QChar (i.e. Unicode) characters.

Example:

QChar qarr[] = { 'i', 'j', 'k', 'l'}; // 8 bytes: 0x00, 0x69, 0x00, 0x6A, 0x00, 0x6B, 0x00, 0x6C

file.write(reinterpret_cast<char *>(qarr), sizeof(qarr));

Remark: Qt does not like C-style castings.

Qt file operations (4)

Instead of method write you may use streams:

QDataStream stream_name(pointer_to_Qfile_object);

QTextStream stream_name(pointer_to_Qfile_object);

In both streams (see https://doc.qt.io/qt-5/qdatastream.html and https://doc.qt.io/qt-

5/qtextstream.html) the data transfer is implemented with overloaded operator<< methods.

During transfer the data is serialized. Several of the Qt standard classes support serialization. In

our own classes, of course, we have to write operator<< methods ourselves. Examples:

QFile file1("Test.bin");

file1.open(QIODevice::ReadWrite | QIODevice::Truncate);

QDataStream stream1(&file1);

int i = 15;

stream1 << i; // stores 0x00, 0x00, 0x00, 0x0F

const char *p = "abcd";

stream1 << p; // stores 0x00, 0x00, 0x00, 0x05, 0x61, 0x62, 0x63, 0x64, 0x00

// and not just 0x61, 0x62, 0x63, 0x64, 0x00 (C-string serialization rules)!

QPoint point(10, 12);

stream1 << point; // stores 0x00, 0x00, 0x0A, 0x00, 0x00, 0x0C

file2.open(QIODevice::ReadWrite | QIODevice::Text | QIODevice::Truncate);

QTextStream stream2(&file2);

stream2 << i << ' ' << p << ' ' << point.x() << ' ' << point.y(); // as cout in standard C++

https://doc.qt.io/qt-5/qdatastream.html
https://doc.qt.io/qt-5/qtextstream.html

Qt file operations (5)

Methods for reading:

qint64 nr_of_bytes_actually_read = file_name.read(pointer_to_buffer, nr_of_bytes_to_read);

QByteArray results = file_name.read(nr_bytes_to_read);

QByteArray results = file_name.readAll();

If the number of actually read data is 0, the file is empty. Return value -1 means that reading has

failed. On the both extreme cases an empty QByteArray is returned.

From text files we may read by lines:

qint64 nr_of_bytes_actually_read = file_name.readLine(pointer_to_buffer, buffer_length);

The result is a regular char * C-string. "\r\n" at the end of line is replaced by "\n\0".

Also, the reading is possible with operator>> from QDataStream (targets may be variables of

Qt standard types but not arrays or other containers) and QTextStream (targets may be also of

class QString and QByteArray as well as pointer to array).

Examples:

QDataStream stream1(&file);

char buf1[1024];

stream1 >> buf1; // compile error

QTextStream stream2(&file);

stream2 >> buf1; // correct, but if the buffer is too small, crashes

QByteArray buf2;

stream2 >> buf2; // advised to use

Qt remote device operations (1)
As the base class is always QIODevice, the main ideas of Qt remote device operations are

almost the same for all of them.

To start, we have to open the device and establish the connection. It may take time and therefore

should be in a separate thread. During connecting procedure this thread is blocked. Therefore

we need to set timeout. If the specified time has elapsed, the connecting has failed. When the

connection has been established, the waiting is interrupted:

void run() {

………………………………

connecting_fun(connecting_parameters);

if (!waiting_fun(timeout_value)) {

emit error_message_to_GUI;

}

else {

emit success_message_to_GUI;

}

}

There is an additional way to know that the connection was successful: at the end of procedure

the device emits signal connected and we have to write a slot for it (for some devices only).

Similar thread with timeout and / or slot for signal disconnected is also necessary for

disconnecting and closing. This signal is emitted also when for some reason the connection has

broken off.

Qt remote device operations (2)

For writing we may use methods write inherited from QIODevice (see slide Qt file operations

(3)).

void run() {

………………………………

qint64 n = write(data_to_write);

if (!waitForBytesWritten(timeout_value)) {

emit error_message_to_GUI;

}

else {

emit number_of_written_bytes_to_GUI

}

}

There is an additional way – signal inherited from QIODevice:

void bytesWritten(nr_written_bytes);

Any Qt remote device emits this signal when the writing operation has finished. The slot must

inform the user and / or the other modules of current program that they may continue.

The user may break off the pending writing operation by closing the device.

Qt remote device operations (3)

For reading we need to write a slot for signal

void readyRead();

QIODevice emits this signal when there is some available data. The slot must perform the

actual reading using functions presented on slide Qt file operations (5).

To set the time we can wait for arrival of data use method

bool result = waitForReadyRead(timeout_in_ms);

Return value false means that the operation is timed out or an error occurred.

The user may break off the pending reading operation by closing the device.

Some devices may also emit error signals (specific to this device, not inherited from

QIODevice).

Settings (1)
It is very cumbersome to fill after each start all the fields in GUI window. To remember and

restore the settings use class QSettings (see https://doc.qt.io/qt-5/qsettings.html#details).

To work with Qt settings mechanism your MainWindow class should contain an object of class

QSettings:

QSettings settings_name(organization_name, application_name);

The both arguments are QStrings. Example:

QSettings *pSettings = new QSettings("TTU", "Coursework");

To store the settings consider to write a MainWindow method that is called from the

QCloseEvent handler as well as from the Exit button slot. In Windows the settings are stored in

the system registry.

To read and view the settings consider to write a MainWindow method that is called from the

constructor.

To store a value, use method setValue():

settings_name.setValue(key, value);

Here QString key specifies the settings name. The value is a QVariant – meaning that it may be

any of the most common Qt types (bool, int, double, QChar, QString, QByteArray, QDate, etc.,

read more from https://doc.qt.io/qt-5/qvariant.html). Example:

pSettings->setValue("nPoints", ui->nPointsLineEdit->text()); // save as text

or

pSettings->setValue("nPoints", ui->nPointsLineEdit->text().toInt()); //save as integer

https://doc.qt.io/qt-5/qsettings.html#details
https://doc.qt.io/qt-5/qvariant.html

Settings (2)
To restore a value use method value():

settings_name.value(key).convertor_from_QVariant();

Example:

ui->nPointsLineEdit->setText(pSettings->value("nPoints").toString());

If the setting with specified key was not found, the value() method returns QVariant with

default zero value, that may be converted to integer zero, to empty string, etc. This zero may be

replaced by any other default value:

settings_name.value(key, default_value).convertor_from_QVariant();

In Windows system registry the keys are case-insensitive.

Settings may be grouped. In that case the key consists of two parts separated by slash, for

example: "mainwindow/size".

You may store the settings when the application is running (for example, to avoid loosing

settings in case of crash):

settings_name.sync();

It is also possible to remove a setting from registry or to clear all the current settings:

settings_name.remove(key);

settings_name.clear();

Layouts (1)

A widget must automatically adjust itself to the changes of window size. Therefore just to

drag a widget onto the main window box is not enough. We have to set the layouts.

Normally, the simple widgets like buttons or edit boxes are put into containers like group

boxes or frames, for example (see also IAS0410 QtExamples.zip folder 8):

Layouts (2)
To start with GUI design, first take a piece of paper and draw a sketch. Then open the

QtCreator design view (see slides First steps with QtCreator (4) and (5)). Everything you

see in the main window is actually located in the container called centralWidget (see the

box on the right upper corner of design view). By default the centralWidget contains

widgets menuBar, mainToolBar and statusBar. If your GUI does not need them, remove

them (right-click and select the pop-up menu command Remove).

In our example the widgets are divided between three group boxes. So drag three group

boxes from the palette into the central widget. Then right-click the main window and from

pop-up menu select Lay out → Lay out vertically. You get three group boxes with equal

dimensions covering the whole main window. Run the application and enlarge and shrink

the main window: the group boxes will automatically adjust their sizes.

Click on the first group box and using the properties table (left lower corner) set the values

for properties objectName and title. Do the same for the second and third group box.

Now drag three buttons into the lower group box. Right-click the group box and from pop-

up menu select Lay out → Lay out horizontally. You get three buttons located side by side.

They cover the whole width of their container:

Layouts (3)

If we enlarge or shrink the main window, the buttons will automatically adjust their

size. But we need buttons with fixed size. Click on a button and set values for

properties minimumSize and maximumSize (the same values for both, for example 80

for width and 25 for height). Also set the values for properties objectName and title.

Do the same for other two buttons too. Run the application: if you enlarge or shrink

the main window, distances between buttons will enlarge or shrink also but the

dimensions of buttons are kept.

Into the upper group box drag a frame. Then drag into the frame two line edit widgets

and two label widgets. Right-click the frame and from pop-up menu select Lay out →

Lay out in a form layout. In the same way create another frame. At last right-click the

group box and from pop-up menu select Lay out → Lay out horizontally:

Run the application: distances between labels and line edit boxes does not change but the

width of line edit boxes is adjusted. If you do not like it, set the maximum and / or minimum

width to proper value.

Layouts (4)

For labels set their texts, for line edit boxes their names Then click the frame and

adjust the layout properties: for example the layoutHorizontalSpacing,

layoutVerticalSpacing, layoutLabelAlignment, etc.

At last drag a plain text edit widget into the middle group box and set its name. Set

the group box layout to horizontal.

To set the main window title click on point not covered by group boxes and set the

value for property windowTitle.

You should always first create the container and only after that put the widgets into it.

If you do not follow this rule, the Qt designer may not be able to grab widgets

because they are now lying under the container.

By default all the group boxes from the central widget have the same dimensions. To

change it set new values for the central widget layout stretches.

More about layouts read https://doc.qt.io/qt-5/designer-layouts.html .

About application icons read https://doc.qt.io/qt-5/appicon.html

In QtCreator designer turn attention to widget called simply as "widget" It is

unvisible but you may set its minimumSize and maximumSize. You may use it to

insert padding between other widgets.

https://doc.qt.io/qt-5/designer-layouts.html
https://doc.qt.io/qt-5/appicon.html

Third-party DLLs

Web page https://wiki.qt.io/How_to_link_to_a_dll contains several serious errors, do

not trust it.

Suppose your Qt widget application name is TestDll and its folder is C:\TestDll.The

application uses ThirdPartyDll.dll. As we use implicit linking here, we need also

ThirdpartyDll.h and ThirdPartyDll.lib. Then:

1. Create folder C:\TestDll\ThirdPartyDll and put ThirdpartyDll.h and

ThirdPartyDll.lib (not ThirdPartyDll.dll) into it.

2. Open your project file C:\TestDll\TestDll.pro and add into it (for example after

row Forms += mainwindow.ui):

INCLUDEPATH += "$$PWD/ThirdPartyDll"

LIBS += "$$PWD/ThirdPartyDll/ThirdPartyDll.lib"

3. Write you code. Calls to functions exported by third-party DLL are as calls to any

other C++ function. Do not forget to add:

#include "ThirdPartyDll/ThirdPartyDll.h"

Use filenames as they are in Windows Explorer – do not change the case.

4. From Build menu select Rebuild All.

5. Into subfolder debug of your build folder put ThirdPartyDll.dll.

6. Click the green arrow (left edge of QtCreater window) – the application should

run.

https://wiki.qt.io/How_to_link_to_a_dll

